M.Sc. (Mathematics) $4^{\text {th }}$ Semester

FUNCTIONAL ANALYSIS-II

Paper-MATH-581

Time Allowed-2 Hours] [Maximum Marks-100
Note :-There are EIGHT questions of equal marks. Candidates are required to attempt any FOUR questions.

1. (a) Define weak convergence and strong convergence of a sequence $\left\{x_{n}\right\}$ in a normed linear space X. Prove that every strongly convergent sequence is weakly convergent and give an example to show that the converse may not be true.
(b) If $\left\{x_{n}\right\}$ is a weakly convergent sequence in a normed space X , which converges weakly to $\mathrm{x}_{0} \in \mathrm{X}$ show that there is a sequence $\left\{\mathrm{y}_{\mathrm{m}}\right\}$ of linear combinations of elements of $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ which converges strongly to x_{0}.
2. (a) Define adjoint of a linear operator on an inner product space. Prove that any bounded linear operator over a Hilbert space has an adjoint.
(b) Let H be a Hilbert space over \mathbb{C} and T be a bounded linear operator on H . Prove that T is normal if and only if $\left\|T^{*}(x)\right\|=\|T(x)\|$ for all $x \in H$.
3. (a) If P is a perpendicular projection on a Hilbert space H, prove that P is a positive operator such that $0 \leq \mathrm{P} \leq \mathrm{I}$.
(b) Prove that any self-adjoint operator on a finite dimensional Hilbert space H has an eigenvalue.
4. State and prove Spectral theorem for normal operators on finite dimensional Hilbert space.
5. (a) Define compact linear map between two normed spaces. If X and Y are normed spaces and $F: X \rightarrow Y$ is a linear map, prove that F is a compact map if and only if for every bounded sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ in $\mathrm{X},\left\{\mathrm{F}\left(\mathrm{x}_{\mathrm{n}}\right)\right\}$ has a subsequence which converges in Y.
(b) Let X be a normed linear space and Y be a Banach space. Prove that the set of all compact linear operators from X and Y is a closed subspace of the space of all bounded linear operators from X to Y .
6. (a) If X is a normed linear space and T is compact linear operator on X . Prove that every nonzero spectral value of T is an eigen value of T .
(b) If T is a compact linear operator on a normed space X. Prove that every eigenspace of T corresponding to a non-zero eigenvalue of T is finite dimensional.
7. (a) Define a Banch algebra. If G denote the set of all regular elements of a complex Banach algebra A, prove that the mapping $\mathrm{x} \rightarrow \mathrm{x}^{-1}$ is a homeomorphism of G onto itself.
(b) Prove that the mapping $\lambda 1 \rightarrow \lambda$ is an isometric isomorphism of a complex Banach algebra A to \mathbb{C} if and only if 0 is the only topological divisor of zero in A.
8. (a) Define spectral radius of an element x of a complex Banach algebra A. Prove that spectral radius of any element x of a complex Banach algebra A equals $\lim \left\|x^{n}\right\|^{1 / n}$.
(b) Let A be a complex Banach algebra, S and Z denote the set of singular elements of A and set of topological divisors of zero in A respectively. Prove that Z is a subset of S and boundary of S is a subset of Z.
